NCAA

Bracket
"AAx

Executing Asynchronous Elements
For Dynamic Data Allocation

By Chad Jordan - April 10th, 2009

Introduction

In this guide you will learn:
1. The fundamental definition and implemented uses of the AJAX technology
2. How to use AJAX to run open and send requests with Perl scripts
3. Split and replace procedures using regular expressions
4. How to implement a fully interactive NCAA bracket on a web page

AJAX (Asynchronous JavaScript and XML), has currently been out for ten years, and within that
span of time, it’s performed faster page renders and improved response times, higher efficiency
of neutrality with multi-system platforms, and architecture. AJAX is more interactive and user-
friendly due to its asynchronous nature. It’s been rapidly growing more in its successful UX
integration throughout the web. Since AJAX allows scripts to be executed inside the user's
browser to communicate with a remote server, it enables new forms of interaction for web
pages and applications. Over the years, AJAX has been responsible for a lot of the technological
progress on the internet. The technology has built login forms, runs auto-complete algorithms
on Google searches, voting and rating functionality on Reddit, updating user content on blog
pages, form submission and validation, chat rooms, instant messaging, and external widgets. In
a nutshell, AJAX is known for enriching web interactions and making web applications become
more like desktop applications. Because AJAX is platform-independent, we can use it beyond
JavaScript with technologies such as PHP, Perl, Ruby, ASP/JSP, DOM, and of course, XHTML. In
this guide, I'll be performing open and send requests with Perl, but most of the interaction is
between the JavaScript, and XHTML side of the AJAX technology. For my code snippets | will be
using the Vim code editor in Linux.

The AJAX Data Process

An AJAX web application has two variations from the traditional web interaction. First, the
communication from the browser to the server is asynchronous; meaning that the browser
does not need to wait for the server to respond. The user can keep using the application while
AJAX connects to a script on the server which then pulls information from the database. Most
AJAX code is used in conjunction with databases and the key aspect of any AJAX web app is to
understand how data is passed from the frontend to the backend. The AJAX call connects to a
script on your server which then pulls data from a database. This script could be written in PHP,
Python, Ruby, Java, and JavaScript. In a traditional web application, HTTP requests, that are
initiated by the user's interaction with the web interface, are made to a web server. The web
server processes the request and returns an HTML page to the client. During HTTP transport,
the user is unable to interact with the web application.

Browser Client Server-Side System

HTTP
Request

User Interface Web Server

HTML

& CSS Data T l

Backend Data

In an AJAX web application, the user is not interrupted in interactions with the web application.
The AJAX engine or JavaScript interpreter enables the user to interact with the web application
independent of HTTP transport to and from the server by rendering the interface and handling
communications with the server on the user's behalf.

Browser Client Server-Side System
—>

Web and/or

User Interface XML Server

| HTTP
* HTML & Request
JavaScript Call CSS Data
l XML
AJAX Engine Data Backend Data
JavaScript Interpreter

<

This program will gather data provided from the Perl scripts on the database, and dynamically
replace the ‘teams’ field with the actual team names along with the score results.

Coding the Bracket Data

| begin by creating a plain XHTML document with barely any CSS attached since the nature of
this assignment is to pull data into a webpage that holds the bracket image (bracket.jpg). The
bracket is simply a jpeg image of an empty bracket, and it’s my job to fill all of those fields with
the data that has been stored on the department servers. This first block of code demonstrates
the initial setup of the HTML and simply displaying the empty bracket as the background for the
web page.

<html xmlns=
<head>
<style>
*{

1
2
3
4
5
6
7
8

background: url(

position:

</style>

This is the image of the empty bracket that | set as the background for the app:

—] ey L —
— T —

Midwest East

The JavaScript file, AJAX.js is called as a reference point for writing the bracket logic. Starting
on line 21 | do a reference call to what will be my first function in my AJAX file called
start_bracket_request. As you can guess, upon opening the HTML file, that function will get
called and run the rest of the program. Within the rest of the paragraph tags, | can provide a
slot title and position for each of the temporary placeholder teams. This current block of teams
covers the midwest region of the bracket.

<script type src > </script>
<title> Bra </title>
</head>
<body o t_bre !
<p ic c > Team 1 </p>
¢ : > Team 2 </p>
<p > Team 3 </p>
<p > Team &4 </p>
<p > Team 5 </p>
<p > Team 6 </p>
<p > Team 7 </p>
<p > Team 8 </p>
<p > Team 9 </p>
<p Team 10 </p>
<p Team 11 </p>
<p Team 12 </p>
<p Team 13 </p>
<p Team 14 </p>
<p Team 15 </p>
<p Team 16 </p>

[

He He He He He He e He He He He He He e He

This next block covers the western region of the bracket so it’s pretty self-explanatory what the
remaining pieces of HTML will look like for the bracket.

vV V V

>
>
>
>
>
>
>
>
>
>
>
>
>

After adding the rest of the placeholders for the eastern and southern regions, and then closing
out my remaining tags, | can run the HTML file and see the following result:

Team 1 Team 33
~Teamy pleml NCAA roam e [Team 3 ——
Team 3 36 Team 35
~Teamg_}eem3 T t 0 Team36
Team 8 uurnamen Team 37
Team 5 Team 5 Team 37 Team 37
__Team6 e Team37 [L_leam38
Team 7 Team 8 =) C Team 40 __Team 39
~Teams }eem8 | T 12 Team 45 T Team 80—

= eam eam
Teamd ;.0 Midwest East Team gy Team]
T Teamio om0 reamas 22 Teamay
Team 11 cam cam Team 43
Team 12 Team 23 Team 43
" Team 1 }em 12 | - | Team2? s [Team 43 [romag
Team 13 Team 14 £an cam Team 45 Team 45
__Teamld }F—— 6 Teamds [L_leamd6
Team 15 Team 47
Team 16 Team 48
" Team 16} 1eam 16 Team 50 [Team 48 —eomas
Team 17 Team 49
Te 18 Te 50
T Team 18 b Team 50 [_Team50
Team 19 Team 51
Team 20 Team 52
Team 20 Team 23 _ Team 50 | Team 50 Team 52
Team 21 Team 22 Team 53 Team 53
__Team22) am 23 Teams6 [1_leam54
Team 23 Team 55
T 4 Team 23 Team 56 e
__ Team24 }——— Team 23 Team 50 ——— Team3
Team 25 Team 26 We S t s ou t h Team 58 __leam 57
_ Team26 f———) 1o o6 Team6o [L_leam58
Team 27 Team 59
Team 28 Team 28 Team 60 Toam 60
Team 30 Team 60
Team 31 Team 30 Team 61 T::$ 63
Sam Team 31 Team 64

Team 32} [Team 64

Now that everything is properly aligned, | now know where my titles for each team will be
positioned per the retrieved data from the Perl scripts. However, this HTML is merely
displaying the text when run, and even though | now have a visual where the teams will be

displayed on the screen, | still need to program the functionality for the form, so when it runs
the bracket will be empty, and thus, dynamically populating the teams as | click each empty
field. With that being said, let’s look at how we can create an AJAX program. The first function
of this program performs the HTTP request and checks for a response to fill the bracket, and if
the page detects a response from the user, then the request calls for the location of the Perl
script and then places the element by tag name when there’s a click.

function start_bracket_request(){
var request=new XMLHttpRequest();
request.onreadystatechange=function(){
if(request.readyState==4){
var response=request.responseText;
fill_bracket(response);
}

request.open('
request.send(null);
var ptags=document.getElementsByTagName ()i
for(var i=0; i<ptags.length; i++){
ptags[il.onclick=handle_team_click

}

function fill_bracket(bracket_data)<{

var regions=bracket_data.split(

regions[@]=regions[@].replace(

regions[3]=regions[3].replace(

for(var 1=0; i<=3; i++){
regions[il=regions[i].split(

}

var Id=1;

for(var region=0; region<=3; region++){
for(var team=1; team<=16; team++){

document.getElementById(+ Id).innerHTML=regions[region][team];
Id++;

If you read my previous guides on regular expressions, then you know what split and replace
functions are. We have to have the ability to manipulate string data for the individual fields of
each region. The regular expression on line 17 splits between the list items in the ordered list,
and then replaces the items in an unordered list in lines 18 and 19. The for loop on line 20
iterates through the remaining regions and performs the split procedures for the list items. The
remaining code in this block iterates through the regions, and teams gets the element IDs, and
places them in the appropriate slots.

This next function handles just what you would expect. Beginning on line 32 | set a new
variable to handle the team scores. Math.ceil() is a JavaScript rounding function that rounds a
number rounded up to the nearest integer. Essentially it takes a parameter, in this case, the
target id for the required string data in the slots. On the next line | set a new variable called
request which will make an HTTP and XML request and then set it to the variable, request.

31 function handle_team_click(e){

32 var gamenum = Math.ceil(e.target.id.replace(

33 var request=new XMLHttpRequest();

34 request.onreadystatechange=function(){

35 if(request.readyState==4){

36 document.getElementById(+ (gamenum + 64)).innerHTML=e.target.innerHTML;
37 if(is_full()){

38 var request2=new XMLHttpRequest();

39 request2.onreadystatechange=function(){

40 if(request2.readyState==4){

41 var response=request2.responseText;
42 response=response.replace(

43 response=response.replace(

44 var splitResults=response.split(

45 for(var Id=65; Id<=127; Id++){
46 if(splitResults[Id-65]==

On line 34 the onreadystatechange property defines a function to be executed when the
readyState attribute changes. The request property holds the status of the XMLHttpRequest
object. Next, on line 35 | have to check that the request has been sent, the server has finished
returning the response and the browser has finished downloading the response content. This
method is referred to as State 4, and is the reason why | use request to access the attribute,
‘readyState==4’. Doing so ensures that value 4 has executed the server HTTP request, and the
AJAX call has been completed. This is why | create another variable called request2 and check
against the properties and objects for the text placement. Line 42 begins the replace and split
procedures using regular expressions for the responseText property. At this point, we’ve used
split and replace functions for the data, and the text. The for loop on line 45 iterates through
all of the empty fields in the bracket and determines if the split results have properly executed
for the fields. The results for the document access the data property getElementByld and the
winning slot is set to green, and the losing team is set to red.

document.getElementById(+ Id).style.color=
}
else{
document.getElementById(+ Id).style.color=
}

}

}
request2.open(
request2.send(
}

}

request.open(
request.send(+gamenum+ +e.target.innerHTML);

From lines 56 through 62 both request variables perform function calls to open and send the
gathered data to the user’s document.

The function, is_full gets the form elements by id, and adds them to the slot data strings, and
places the team with the matching data attribute.

66 function is_full(){

Y
68
69
70 }
71

72

73 i

retu

for(var Id=65;
if(!document.getElementById(

Id<=127;

return H

rn

Id++){

+ Id).innerHTML.match(

This concludes the logic portion of the AJAX program, and when everything passes the
JavaScript interpreter, and | run the HTML file, the final results display the following:

Louisville 74

— Louisville 7¢
Morehead State 54

)

Louisville 103

Ohio State 72

- Siena 72
Siena 74

Utah 71

Arizona 71

Wake Forest 69

Arizona 64

Cleveland State 84

West Virginia 60

Davton 43
Davton 68

Cleveland State 57

Midwest

NCAA

Louisville 52 Iournament Pittsburgh 76

Michigan State 82

Kansas 62

Kansas 84

K: sas 60
N\ Dakota St 74 8

Boston College

55
— USC 69
USC 72

Michigan State 64

Michigan Ntate 67

Michigan State 77

Michigan S
Robert Morris 62 chigan

UConn 103 5
— U Conn 92
Chattanooga 47

ate 74

LUConn 72

BYL 66

— Texas A&M

Purdue 61

— Purdue 76
Northern lowa 56

60

Conn 82

Purdue 60

Washington 71

— ———o1Washington
Mississippi St 58

Marquette 58
Utah State 57

Marquette 79

LConn

73

North (

| West

Missouri 102

Missouri 78

- Missouri 83
Cornell 59
California 71

Maryland 70
Maryland 84

Memphis 81

Memphis 8¢

CSU Northridge 7(

Missouri 75

Memphis 9

Michigan State|72

North Carolina

arolina

Pittsburgh 60

Pittsburgh 72

ETSU 62

Pittsburgh 84

OKklah¢

Oklahoma State 77

ma State 76

Iennessee 75

Florida State 59

Wisconsin 49
Xavier 55

Villanova 69

East

Villanova 7

Xavier 77

Xavier 60 —
Portland State 59
UCLA 65

LUCLA 69

Millanova 78

Duke 54

Villanova 80

American 67

illanova 89

lexas 76

Texas 69 -
Duke 86

North
North Carolina 98

Duke 74
Binghamton 62

North Carolina 101

Carolina 84 - =
Radford 58

North Carolinal|72

We

sonzaga 7

LSU 75

LSU 70
Butler 71

Ilinois 72

stern KY 81 —
- Western KY 76

North[Carolina 83

South.,,,

Syracuse 71

Gonzaga

(l) age N)
—_ Akron 64

Arizona State 66

ona State 67

lemple 57

Jklahoma 60

Oklahoma 84

Svracuse 59

Syracuse 7 . .
SE Austin 44

Clemson 59

Michigan 63

(

-, Oklahoma 82
klahoma 73 -
Morgan State 54

Looks like Christmas in more ways than one. Granted | had to make a few minor adjustments in
the HTML file for pixel alignment but that’s more of an issue with the supplied jpeg image. This
program can no longer be tested because the Perl scripts have been pulled from the database,
but essentially when the HTML file is loaded online, the fields within the bracket are entirely
empty and as the user clicks each individual field, the team results auto-populate to the

respected fields of their regional locations. Other than some of the image brackets not being
long enough to contain the team names, this turned out very well. The overall alignment is
properly positioned, the AJAX portion of the program behaves and dynamically pulls, and loads
the data from the database exactly as it’s supposed to, so this is a successful AJAX
implementation of an NCAA Bracket program for the web.

Conclusion

My hope is that this guide has been useful for anyone wanting to learn how AJAX works and the
implementation process of integrating that technology into the web. When considering the
uses of implementing more projects with AJAX, it’s important to consider some of the
advantages and disadvantages of using the technology. A few advantages right off the bat are
AJAX applications render without data, which reduces server traffic and increases the speed
with less bandwidth usage. Another is using the XMLHttpRequest type which seems to be a
somewhat widely used technique for sending a request to AJAX pages. Another advantage is in
contrast to traditional form submission, where client-side validations occur after submission,
the AJAX method enables immediate form validation. These are just a few elements that
improve the user’s overall performance, interactions, and usability of web applications.

A few disadvantages to keep in mind, search engines like Google cannot index AJAX pages so
from a users’ perspective, when you click the back button on the browser, you may not return
to the previous state of the page. This happens because the pages with consecutive AJAX
requests are unable to register with the browser’s history. Users will find it challenging to
bookmark a specific state of the application due to the dynamic instance of the web page/s.
Finally, even though I’m a firm believer in an open-source environment, because AJAX is open-
source, this can cause security issues for the web pages that are using the technology.

Other than that, due to the ever-present changes that AJAX is helping to evolve the web and
user interactions, | can see this technology continuing to be a widely-used method for web
development practices everywhere. All diagrams and code snippets presented in this guide
were created and written by Chad Jordan for learning purposes only. The OS that the bracket
was displayed in was the Chrome browser with Ubuntu Linux 8.10, and written using the Vim
code editor. For any possible inquiries such as general questions regarding this guide or other
professional inquiries please feel free to email me at cjordan@wondercreationstudios.com

Resources Used:
e Sebesta, W. Robert - Programming the World Wide Web — 4th Edition — 2008
e \W3schools.com

https://www.w3schools.com

